Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1428, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365898

RESUMO

Lead-free, silicon compatible materials showing large electromechanical responses comparable to, or better than conventional relaxor ferroelectrics, are desirable for various nanoelectromechanical devices and applications. Defect-engineered electrostriction has recently been gaining popularity to obtain enhanced electromechanical responses at sub 100 Hz frequencies. Here, we report record values of electrostrictive strain coefficients (M31) at frequencies as large as 5 kHz (1.04×10-14 m2/V2 at 1 kHz, and 3.87×10-15 m2/V2 at 5 kHz) using A-site and oxygen-deficient barium titanate thin-films, epitaxially integrated onto Si. The effect is robust and retained upon cycling upto 6 million times. Our perovskite films are non-ferroelectric, exhibit a different symmetry compared to stoichiometric BaTiO3 and are characterized by twin boundaries and nano polar-like regions. We show that the dielectric relaxation arising from the defect-induced features correlates well with the observed giant electrostriction-like response. These films show large coefficient of thermal expansion (2.36 × 10-5/K), which along with the giant M31 implies a considerable increase in the lattice anharmonicity induced by the defects. Our work provides a crucial step forward towards formulating guidelines to engineer large electromechanical responses even at higher frequencies in lead-free thin films.

2.
ACS Omega ; 7(9): 7816-7824, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35284710

RESUMO

With the increase of drug resistance, there is a need for surface coatings that inhibit microbes without antibiotics. Nanostructured photocatalysts, like TiO2-coated nanotubes, are promising alternatives to antibiotics. Nanostructures rupture the cell wall by impaling the bacteria. Photocatalysts generate reactive oxygen species (ROS) in the presence of light, which oxidize organic matter. The combined effect of photocatalysts and nanostructures is better than the addition of individual components, as nanostructures also enhance the ROS production by trapping light. The synergetic effect is remarkably effective in reducing the growth of bacterial colonies, but scalability still remains a challenge. Conventional techniques like atomic layer deposition (ALD) are excellent for proof of concept but are not scalable to hundreds of square meters, as needed for practical applications. This report demonstrates two scalable and cost-effective techniques for synthesizing photocatalytic nanostructures: spray- and spin-coating TiO2 nanoparticles. Unlike ALD, spray- and spin-coated TiO2 nanoparticles do not reduce the roughness of a structured surface, which improves antibacterial performance by 23%. Integration of nanostructures with spray-coated TiO2 is potentially a low-cost and scalable technology for large-area antibacterial surfaces.

3.
Inorg Chem ; 60(22): 17141-17150, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34699217

RESUMO

There are very few p-type semiconductors available compared to n-type semiconductors for positive sensing response for oxidizing gases and other important electronic applications. Cupric oxide (CuO) is one of the few oxides that show p-type conductivity, useful for sensing oxidizing gases. Many researchers obtained CuO using the chemical and solid-state routes, but uniformity and large-area deposition have been the main issues. Chemical vapor deposition is one such technique that provides control on several deposition parameters, which allow obtaining thin films having crystallinity and uniformity over a large area for the desired application. However, CuO-chemical vapor deposition (CVD) is still unfathomed due to the lack of suitability of copper precursors based on vapor pressure, contamination, and toxicity. Here, to address these issues, we have taken four Cu complexes (copper(II) acetylacetonate, copper(II) bis(2,2,6,6-tetramethyl-3,5-heptanedionato), copper(II) ethylacetoacetate, and copper(II) tert-butylacetoacetate), which are evaluated using thermogravimetry for suitability as a CVD precursor. The decomposition behavior of the complexes was also experimentally confirmed by depositing CuO thin films via CVD. Phase purity, decomposition, volatility, growth rate, and morphological characteristics of the films are investigated in detail. Analysis suggests that copper(II) tert-butylacetoacetate has the highest vapor pressure and growth rate at a low temperature, making it the most suitable precursor for high-throughput CVD. Further, to investigate the role of these precursors, films deposited using Cu complexes were subjected to gas sensing. The CuO gas sensor fabricated on glass shows pronounced NO2 sensing. The sensing results of CuO films have been explained from the standpoint of roughness, morphology, and unpassivated bonds present on the surface of films and vapor pressure of precursors. The higher density of surface state and the lower resistivity of the Cu(tbaoac)2 film lead to a sensor with higher responsivity and sensitivity (down to 1 ppm). These precursors can probably be utilized to improve the performance of other metal oxide gas sensors, especially Cu2O and Cu-III-O2.

4.
Nanotechnology ; 32(31)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33873164

RESUMO

Light-matter interaction in graphene can be engineered and substantially enhanced through plasmonic sensitization, which has led to numerous applications in photodetection, sensing, photocatalysis and spectroscopy. The majority of these designs have relied on conventional plasmonic materials such as gold, silver and aluminum. This limits the implementation of such devices to the ultraviolet and visible regimes of the electromagnetic spectrum. However, for many practical applications, including those relevant to security and defense, the development of new strategies and materials for sensing and detection of infra red (IR) light is crucial. Here we use surface enhanced Raman spectroscopy (SERS), for direct visualization and estimation of enhanced light-matter interaction in graphene in the mid-IR regime, through sensitization by an unconventional plasmonic material. Specifically, we fabricate a hybrid device consisting of a single layer graphene and a two-dimensional array of nanodiscs of aluminum doped zinc oxide (AZO), which is a highly doped semiconductor, exhibiting plasmonic resonance in the mid-IR. We find that the enhancement in the SERS signal of graphene is of similar magnitude to what has been achieved previously in the visible using conventional plasmonic materials. Our results establish the potential of such hybrid systems for graphene-based optical and optoelectronic applications in the mid-IR.

5.
ACS Appl Mater Interfaces ; 13(18): 21936-21943, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33913692

RESUMO

CuO is a multifunctional metal oxide excellent for chemiresistive gas sensors. In this work, we report CuO-based NO2 sensors fabricated via chemical vapor deposition (CVD). CVD allows great control on composition, stoichiometry, impurity, roughness, and grain size of films. This endows sensors with high selectivity, responsivity, sensitivity, and repeatability, low hysteresis, and quick recovery. All these are achieved without the need of expensive and unscalable nanostructures, or heterojunctions, with a technologically mature CVD. Films deposited at very low temperatures (≤350 °C) are sensitive but slow due to traps and small grains. Films deposited at high temperatures (≥550 °C) are not hysteretic but suffer from low sensitivity and slow response due to lack of surface states. Films deposited at optimum temperatures (350-450 °C) combine the best aspects of both regimes to yield NO2 sensors with a response of 300 % at 5 ppm, sensitivity limit of 300 ppb, hysteresis of <20%, repeatable performance, and recovery time of ∼1 min. The work demonstrates that CVD might be a more effective way to deposit oxide films for gas sensors.

6.
ACS Appl Bio Mater ; 4(9): 6903-6911, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35006990

RESUMO

Antimicrobial surfaces can reduce the spread of bacteria from high-touch surfaces, saving millions of lives worldwide. Antibacterial photocatalytic films, like TiO2, are widely reported but limited in practice because they need high-intensity UV light. More practical but less reported are photocatalysts that work under low-intensity visible light from an indoor lamp. Here, we demonstrate that manganese vanadium oxide (MVO) is an antibacterial photocatalyst that works under light-emitting diode (LED) lights at ∼3000 lux. MVO is an earth-abundant semiconductor with a band gap of 1.7 eV that absorbs visible light to create reactive oxygen species (ROS) in water. ROS reduces bacteria counts by 4 orders of magnitude in 8 h under 9000 lux LED light. The antibacterial effect is significant even in MVO powder and films, which are amenable to large-area fabrication. MVO is a promising candidate for next-generation antimicrobial coatings that are stable, cheap, effective, earth-abundant, and activated by indoor lights.


Assuntos
Anti-Infecciosos , Vanádio , Antibacterianos/farmacologia , Manganês/farmacologia , Óxidos/farmacologia , Espécies Reativas de Oxigênio , Titânio/farmacologia
7.
ACS Appl Mater Interfaces ; 12(18): 20202-20213, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32283016

RESUMO

The efficiency of photocatalytic antibacterial surfaces is limited by the absorption of light in it. Light absorption in photocatalytic surfaces can be enhanced by structuring it, leading to increased generation of reactive oxygen species (ROS) and hence improved bactericidal efficacy. A second, more passive methodology to kill bacteria involves the use of sharp nanostructures that mechanically disrupt the bacterial membrane. Recently, these two mechanisms were combined to form photoactive nanostructured surfaces with better antibacterial efficacy. However, the design rules for fabricating the optimal photoactive nanostructured surfaces have not been articulated. Here we show that for optimal performance it is very important to account for optoelectrical properties and geometry of the photoactive coating and the underlying pillar. We show that TiO2-coated nanopillars arrays made of SiO2, a material with a low extinction coefficient, have 73% higher bactericidal efficacies than those made of Si, a material with a high extinction coefficient. The finite element method (FEM) shows that despite the higher absorption in higher aspect ratio nanopillars, their performance is not always better. The concentration of bulk ROS saturates around 5 µm. For taller pillars, the improvement in surface ROS concentration is minimal due to the diffusion bottleneck. Simulation results corroborate with the experimentally observed methylene blue degradation and bacterial count measurements and provide an explanation of the observed phenomenon. The guidelines for designing these optically activated photocatalyst nanopillars can be extended to other photocatalytic material after adjusting for their respective properties.


Assuntos
Antibacterianos/farmacologia , Nanoestruturas/química , Dióxido de Silício/química , Silício/química , Antibacterianos/química , Catálise/efeitos da radiação , Escherichia coli/efeitos dos fármacos , Radical Hidroxila/química , Radical Hidroxila/farmacologia , Luz , Azul de Metileno/química , Testes de Sensibilidade Microbiana , Oxirredução , Oxigênio/química , Propriedades de Superfície , Titânio/química , Titânio/efeitos da radiação , Água/química
8.
ACS Appl Mater Interfaces ; 12(12): 13982-13987, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32129058

RESUMO

We report acetamidinium (AA)-substituted methylammonium (MA) lead iodide perovskite solar cells. AA has a restricted C-N bond rotation because of delocalized π-electron cloud over the N-C-N bond and the presence of an additional N-H···I bond (4H-bond in AA as compared to 3H-bond in MA). These bonding structures strengthen the electrostatic interaction and stabilize the AA cation inside the perovskite matrix. AA, a larger cation, is substitutional only up to 10%. Devices made with 10% AA-substituted films show an average Voc of 1.12 V, higher than the average Voc of 1.04 V in the case of MA lead halide perovskite (MAPbI3). This increase in Voc can be attributed to an increase in carrier lifetime from 20 µs in the case of MAPbI3 to 32 µs for 10% AA-substituted films respectively. Devices with 18.29% champion and 16.3% average efficiency were fabricated for films with 10% AA. Degradation experiments confirm that the material stability also makes devices more stable; under ambient exposure (72 ± 3% RH), devices with 10% AA retain 70% of their initial power conversion efficiencies (PCEs) up to 480 h. Under the same conditions, the PCEs of reference MAPbI3 devices reduced to 43% of their initial value in 480 h.

9.
Adv Mater ; 23(48): 5762-6, 2011 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-22109841

RESUMO

A hybrid approach to solar cells is demonstrated in which a silicon p-n junction, used in conventional silicon-based photovoltaics, is replaced by a room-temperature fabricated silicon/organic heterojunction. The unique advantage of silicon/organic heterojunction is that it exploits the cost advantage of organic semiconductors and the performance advantages of silicon to enable potentially low-cost, efficient solar cells.


Assuntos
Nanotecnologia/métodos , Semicondutores , Silício/química , Energia Solar , Fontes de Energia Elétrica , Desenho de Equipamento , Teste de Materiais , Modelos Químicos , Modelos Estatísticos , Óxidos/química , Luz Solar , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...